On faithful quasi-permutation representations of VZ-groups and Camina <i>p</i>-groups
نویسندگان
چکیده
For a finite group G, we denote by μ(G) and c(G), the minimal degree of faithful permutation representation G quasi-permutation matrices over complex field C respectively. In this paper, examine c(G) for VZ-groups Camina p-groups.
منابع مشابه
QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملOn minimal degrees of faithful quasi-permutation representations of nilpotent groups
By a quasi-permutation matrix, we mean a square non-singular matrix over the complex field with non-negative integral trace....
متن کاملMinimal Degree of Faithful Quasi-permutation Representations of p-Groups
In [2], we gave algorithms to calculate c(G), q(G) and p(G) for a finite group G. In this paper, we show that for a finite p-group G, where p is a prime, q(G) = p(G). Moreover, for odd prime p, c(G) = q(G) = p(G). 2000 Mathematics Subject Classification: primary 20D15; secondary 20B05, 20C15
متن کاملquasi-permutation representations of metacyclic 2-groups
by a quasi-permutation matrix we mean a square matrix over the complex field c with non-negative integral trace. thus, every permutation matrix over c is a quasipermutation matrix. for a given finite group g, let p(g) denote the minimal degree of a faithful permutation representation of g (or of a faithful representation of g by permutation matrices), let q(g) denote the minimal degree of a fai...
متن کاملOn Minimal Faithful Permutation Representations of Finite Groups
The minimal faithful permutation degree n(G) of a finite group G is the least positive integer n such that G is isomorphic to a subgroup of the symmetric group Sn. Let AT be a normal subgroup of a finite group G. We prove that n(G/N) $C /i(G) if G/N has no nontrivial Abelian normal subgroup. There is an as yet unproved conjecture that the same conclusion holds if G/N is Abelian. We investigate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2022
ISSN: ['1532-4125', '0092-7872']
DOI: https://doi.org/10.1080/00927872.2022.2137174